
1

G52CPP 
C++ Programming

Some example questions
and 

some tactical hints about how to 
do the exam



Exam Content - repeat
• Most concepts appear somewhere on exam 
• Standard class library not needed, except:

– Recognise that cout << v means output/print the value of v 
and be able to make simple examples of this

– Know basics of the string and vector classes
• As seen in lectures, i.e. understand lecture samples

• Know the common C -library functions
– What a function does, not parameter details
– File access, string functions, input and output

• Ensure that you can create a template function and 
operator overload
– And a macro (#define) and understand the difference

• Understand about conversion constructors and operators, 
copy constructors and assignment operators

2



Things to know (1)
• You need to know char* type C-strings

– Where the char* points to an array of chars with a 0 at the end

• Be aware of array bounds issues
• And pointer arithmetic (e.g. *p++ = *q++ )

Know about:
• struct s, and class es

– member functions
– virtual functions
– inline functions
– Scoping and ::
– constructors (especially default and copy)
– assignment operators, …
– Conversion constructors and operators

• struct vs class vs union
3



4

Things to know (2)

• const members, parameters, references, pointers
• static local variables
• static member data and functions

• Pass/return by value vs by reference/pointer
• Function pointers
• Exceptions and exception handling
• Ensure that you can create a template function
• Ensure that you can provide operator overloads

– e.g. for operator* and operator*=

• Understand the C++-style casts
– What do they do? What are the differences between them? 

When would each be used?
– static vs dynamic, const and reinterpret



5

Hints

• Pick and choose your questions according 
to what you are good at 
– Obvious? Why do so many people do Q1,2,3?

• Take some time to work out what each 
question (part) is asking
– Is it something that you know how to do?

• Check the rest of the paper if you are 
stuck – sometimes it may jog your memory
– e.g. does a code sample answer something?



6

How to revise

• Try the examples on the lecture slides

• Go through the slides in this presentation

• Try the past papers – ensure that you can do them 
without having to look up the answers
– If you get stuck, look up how to do it, don’t look at the answer 

until you are sure
– Copy code samples into a compiler and experiment with them

• Go through example code type questions
– What is the question asking?
– What do I need to know to answer it?
– Are there any tricky bits?
– What is the answer?



7

One type of short 
question to expect:

“What is the output of …”



8

What is the output of this program?
#include <cstdio>
struct Base
{

int foo()
{

static int j = 1;
return j++;

}
virtual int bar()
{ return foo(); }

};
struct Sub : public Base 
{

int foo()
{

static int j = 10;
return j++;

}
int bar() 
{ return foo(); }

};

int main()
{

Base b;
Sub s;
Base& br = s;
Sub& sr = s;

int i1 = b.foo();
int i2 = s.foo();
int i3 = br.foo();
int i4 = sr.foo();
int i5 = b.bar();
int i6 = s.bar();
int i7 = br.bar();
int i8 = sr.bar();
printf( "%d %d %d %d\n", 

i1, i2, i3, i4 );
printf( "%d %d %d %d\n", 

i5, i6, i7, i8 );
return 0;

}



9

How to answer…
• What was the question testing?

– ???

• Use the information to avoid mistakes
• This sort of question tests your knowledge 

of things without asking you about them 
directly

• Make notes as you go along
• Write down variable values
• At least give us a chance to give 

‘working out marks’ if you make a 
mistake



10

What can we observe?
#include <cstdio>
struct Base
{

int foo()
{

static int j = 1;
return j++;

}
virtual int bar()
{ return foo(); }

};
struct Sub : public Base 
{

int foo()
{

static int j = 10;
return j++;

}
int bar() 
{ return foo(); }

};

foo() and bar() differ in being
virtual or not

bar() IS virtual
The type of the actual object

matters

foo() is NOT virtual
The type of the pointer or 
reference through which

it is called matters



11

What is the output of this program?
#include <cstdio>
struct Base
{

int foo()
{

static int j = 1;
return j++;

}
virtual int bar()
{ return foo(); }

};
struct Sub : public Base 
{

int foo()
{

static int j = 10;
return j++;

}
int bar() 
{ return foo(); }

};

The two foo() functions have
separate j variables

The values are kept between
function calls (static)

Each j increments by 1 AFTER
the value is returned
(POST increment)

As we work through…
we will need to look at:
• what object foo() or bar() is being

called on
• what is the pointer type
• keep a track of the two j values

(for the two functions)



12

Understand what the question tests

Question: What is this question testing ?



13

Understand what the question tests

Question: What is this question testing?
a) Do you know about static local variables?
b) Do you know about virtual and non-virtual 

functions?
(Note that all foo()s come before all bar()s, so you 
get some marks for knowing one of these things.)

• Be careful with these questions
• Ask yourself:

– “What is being tested by this question”
– Then decide how to apply your knowledge



14

Now to answer it…
#include <cstdio>
struct Base
{

int foo()
{

static int j = 1;
return j++;

}
virtual int bar()
{ return foo(); }

};
struct Sub : public Base 
{

int foo()
{

static int j = 10;
return j++;

}
int bar() 
{ return foo(); }

};

int main()
{

Base b;
Sub s;
Base& br = s;
Sub& sr = s;

int i1 = b.foo();
int i2 = s.foo();
int i3 = br.foo();
int i4 = sr.foo();
int i5 = b.bar();
int i6 = s.bar();
int i7 = br.bar();
int i8 = sr.bar();
printf( "%d %d %d %d\n", 

i1, i2, i3, i4 );
printf( "%d %d %d %d\n", 

i5, i6, i7, i8 );
return 0;

}



15

The ‘full’ correct answer
• Assuming that you ‘show your working’ 

please make the answer particularly clear
• i.e. Markers need to know which is the 

answer (to mark) and which is your 
working out, e.g.:

• “The output is:
1 10 2 11
3 12 13 14”

• “Answer:
1 10 2 11
3 12 13 14”



16

Similar question possibilities
• Many examples could be easily generated:

– References or pointers vs pass by value
– Pointer arithmetic (espec. ++) or pointers to pointers
– static v non-static local variables
– virtual v non-virtual functions
– static v non-static member variables
– Exception throwing and catching

• For questions like: “What is the output of this…”
– Look for subtleties
– These test knowledge indirectly
– Test your ability to apply your knowledge rather than to 

memorise facts



17

Another type of
question to expect:

“What is wrong with this 
code?”



18

Example question

• What is wrong with this program and how would
you correct it?

#include <cstdio>

int main()
{

char * str;
scanf( "%s", str );
printf("Input string was %s \n“ , str );
return 0;

}



19

Answer:

#include <cstdio>

int main()

{

// was char* str;

char str[1024];

// Was scanf("%s", str);

scanf( "%1023s", str );

printf(

"Input string was %s\n“, 
str );

return 0;

}

Two problems:
1. No memory allocated to 

hold the string
2. No limit on string length 

read
To fix the problems:
1. Create a char array 

instead of char* (can 
still be used as a char* )

2. Limit the length of the 
string that scanf can 
read to 1 less than array 
size



20

Another big problem in C/C++
• There is no bounds checking

– You can use classes which will check for 
you, but they are slower than using native 
arrays

– (use container classes – then there is)

• We don’t always know when we have 
overwritten past the end of an array

• You need to be VERY careful to ensure 
that:

1. Enough memory is allocated
2. When you use functions you limit the 

size that they can write



21

Concept : memory allocation

• There is a difference between a pointer 
and the thing it points to, e.g.:

1. When can you treat a char* as a string?
– ONLY when it points to an array of 

characters with a zero on the end

2. When can you use a char* as the place 
to put a string that you read in (e.g. with 
scanf , fscanf , gets , fgets , etc)?

– ONLY when you allocate memory to accept 
the string and make the char* point to the 
memory that you allocated



22

Another type of
question to expect:

“Write code to …”



Write code to…
1. Give an implementation for a default 

constructor for this class…

2. Implement a function for class B so that the 
following code would compile:
B a, b, c;

a = b * c;

• Work out what the function needs to do first
• i.e. operator overload for * operator in this case

23



Quick code questions (08/09)

3d: Write a function called min() which takes 
two long parameters called val1 and val2 
and returns the value of the lesser of the 
two values as a long , using the ternary 
operator ( ?: ). (i.e. it should return the 
minimum of the two values.)

3e: Provide the code for a macro called MIN 
using #define which will perform the 
same function as your min() function in 
question 3d.

24



2010/2011 Q1b

• Provide C/C++ code to define a macro 
(using #define) called PRODUCT, which 
takes two parameters and returns the 
product of the two parameters.

• e.g. PRODUCT(2,3) is 6, PRODUCT(1,5) 
is 5 and PRODUCT(-3,4) is -12

Answer: 
#define PRODUCT( a,b ) ((a)*(b))

25



26

Quick ‘knowledge’ questions



Quick questions
• What is the difference between a class and a struct in 

C++?
• What is the :: operator used for in C++? Give two 

examples of its use.
• What is the difference between protected and private 

member data in C++?
• What is meant by the term ‘overloaded function’ in C++?
• Name four methods which may be created implicitly by a 

C++ compiler for a C++ class if they are needed.
• “In addition to a default (no-parameter) constructor and a 

destructor, name two other methods which may be 
created implicitly by a C++ compiler for a C++ class if 
they are needed.”

27



28

Example past paper question



2008/2009 Q1b
It is required to call the function printf () if, and 
only if, the integer variables x and y are both 
nonzero.
Which (one or more) of the following would have the 
desired result?
I. if ( x & y ) { printf( "i" ); }

II. if ( x && y ) { printf( "ii" ); }

III. if ( x | y ) { printf( "iii" ); }

IV. if ( x || y ) { printf( "iv" ); }

V. if ( !(!x || !y) ) { printf( "v" ); }

29



What is it testing?

• Do you know what the & operator does?

• What about the && operator?

• What is the difference between & and && ?

• How does ! work with |, ||, & and && ?

30



31

struct and union sizes



32

struct and union sizes
#pragma pack(1)

struct S1
{

short s;
char c;

};

struct S2
{

long l1;
unsigned long l2;

};

struct S3
{

S1 a1;
S2 a2;

};

union U1
{

char c;
short s;
long l;

};

union U2
{

long l;
U1 u;

};

int main()
{

printf( "S1 size %d\n", sizeof(S1) );
printf( "S2 size %d\n", sizeof(S2) );
printf( "S3 size %d\n", sizeof(S3) );
printf( "U1 size %d\n", sizeof(U1) );
printf( "U2 size %d\n", sizeof(U2) );

}

Q: What is the output
assuming that:
sizeof(short) is 2
sizeof(long)  is 4

Reminder: by definition
sizeof(char) is 1



33

struct and union sizes
#pragma pack(1)

struct S1
{

short s;
char c;

};

struct S2
{

long l1;
unsigned long l2;

};

struct S3
{

S1 a1;
S2 a2;

};

union U1
{

char c;
short s;
long l;

};

union U2
{

long l;
U1 u;

};

int main()
{

printf( "S1 size %d\n", sizeof(S1) );
printf( "S2 size %d\n", sizeof(S2) );
printf( "S3 size %d\n", sizeof(S3) );
printf( "U1 size %d\n", sizeof(U1) );
printf( "U2 size %d\n", sizeof(U2) );

}

What is the output
assuming that:
sizeof(short) is 2
sizeof(long) is 4

2+1 = 3

4+4 = 8

3+8 = 11

max(1,2,4) = 4

max(4,4) = 4



34

References, pointers, 
parameters and return types

Revision and clarifications



35

Parameter revision

• Passing a parameter to a function by value 
makes a copy of it
void RefFoo1( int i ) { … }

• Passing a pointer to a function by value makes a 
copy of the pointer
void RefFoo1( int * pi ) { … }

• Passing a parameter to a function by reference 
gives a new name for the actual thing (no copy)
– Acts like passing in a pointer

void RefFoo1( int & ri ) { … }



36

Return type revision

• Returning something ‘by value’ makes a copy of the 
thing returned
– Copy constructor is used for objects

int RefFoo1() { … return j; }

• Returning something ‘by reference’ returns the thing 
itself
– No copy has to be made, but could be const & to try to avoid 

the original being altered

int& RefFoo1() { … return j; }

• Returning a pointer returns a copy of the pointer,  which 
will point to the same thing
int* RefFoo1() { … return pj; }

• Note: You can return a reference to a pointer, as shown 
in the final lecture (not needed for exam!)



37

Danger: References and pointers
// Return pointer to parameter – danger
int* PFoo1( int i ) { return &i; }
// Return reference to parameter - danger
int& RefFoo1( int i ) { return i; }

// Return pointer passed in - fine
int* PFoo2( int* pi ) { return pi; }
// Return reference passed in - fine
int& RefFoo2( int& i ) { return i; }

// Return pointer to local – danger
int* PFoo3( int i ) { int j = 2; return &j; }
// Return reference to local - danger
int& RefFoo3( int i ) { int j = 2; return j; }

// Return pointer to static local - fine
int* PFoo4( int i ) {static int k = 3; return &k;}
// Return reference to static local - fine
int& RefFoo4( int i ) { static int k = 3; return k;}



38

Best wishes for doing well
in the exam

Give me a 100% mark to 
celebrate this year ☺

The remaining slides are just 
practice questions

We can go through any you wish 
this afternoon at 2pm,

Or you can ask other questions



39

template functions



40

Question

• A function is required which will take two 
integers as parameters and which will use 
the ternary operator to determine the 
minimum of the two parameters passed in

• It should return this minimum value, as an 
int

• Provide an implementation of a function 
called mymin() which will perform as 
described above



41

Answer

• Return type is int
• Parameter types are both int
• Ternary operator is the  ? : operator

int mymin( int i, int j )
{

return i < j ? i : j;
}

• Hint: Look elsewhere in the exam questions if 
you cannot remember the details for a function 
definition – there are bound to be a lot of them



42

Question

• Convert your answer to the previous part 
into a template function which will accept 
two parameters of the same type and 
return a value of the same type



43

Reminder: template functions

How to make a template function:
1. First generate function for specific type(s)
2. Next replace all copies of the types with 

template types
3. Finally, add the keyword template at the 

beginning and put the type(s) in the <>
with keyword typename (or class )



44

Answer

1. Add the initial template <typename T>
2. Convert all the types to T

• Initial version:
int mymin( int i, int j )
{

return i < j ? i : j;
}

• Template version:
template <typename T>
T mymin( T i, T j )
{

return i < j ? i : j;
}



45

const



46

const – a clarification and reminder

• const means that the thing is constant
• const variable

– Cannot alter the value of the variable. A constant
– Have to set value on initialisation – otherwise it is too late

• const on function parameters:
– The function guarantees that it will not change the parameter 

that is passed in – if it does then compiler will give an error
• const on member function

– The const member function guarantees not to change the 
object

– i.e. the this pointer is constant
• const reference

– Cannot alter the thing that is referenced
• const pointer (two types)

– Constant pointer – pointer cannot be changed : char * const
– Pointer to something that cannot be changed : const char *



47

What is wrong with this code?
class C
{
public:

float& get1()
{

return f;
}
float& get2() const
{

return f;
}
const float& get3() const
{

return f;
}

private:
float f;

};

• What is wrong with the 
code on the left?

• i.e. something in this 
code will prevent it 
compiling what is it?

• Hint: Something to do 
with const



48

Answer
class C
{
public:

float& get1()
{

return f;
}
float& get2() const
{

return f;
}
const float& get3() const
{

return f;
}

private:
float f;

};

• Answer: get2() will not compile

• It returns a reference to the float in 
the current object

• This means that the float could be 
changed, through the reference

• But the function is const, 
guaranteeing that it cannot be 
used to change the object

• get1() will work – it makes no 
guarantees

• get3() will work – it returns a 
const ref, i.e. the reference cannot 
be used to change the object



49

Which lines will not compile?
class C
{
public:

float& get1()
{ return f; }

const float& get3() const
{ return f; }

private:
float f;

};

int main()
{

C ob;
const C& ref = ob;

float f1 = ob.get1();
const float cf1 = ob.get1();
float& rf1 = ob.get1();
const float& crf1 = ob.get1();

float f2 = ref.get1();
const float cf2 = ref.get1();
float& rf2 = ref.get1();
const float& crf2 = ref.get1();

float f3 = ob.get3();
const float cf3 = ob.get3();
float& rf3 = ob.get3();
const float& rf3 = ob.get3();

float f4 = ref.get3();
const float f4 = ref.get3();
float& rf4 = ref.get3();
const float& rf4 = ref.get3();

}



50

Consider the first four
class C
{
public:

float& get1()
{ return f; }

const float& get3() const
{ return f; }

private:
float f;

};

int main()
{

C ob;
const C& ref = ob;

float f1 = ob.get1();
const float cf1 = ob.get1();
float& rf1 = ob.get1();
const float& crf1 = ob.get1();

float f2 = ref.get1();
const float cf2 = ref.get1();
float& rf2 = ref.get1();
const float& crf2 = ref.get1();

float f3 = ob.get3();
const float cf3 = ob.get3();
float& rf3 = ob.get3();
const float& rf3 = ob.get3();

float f4 = ref.get3();
const float f4 = ref.get3();
float& rf4 = ref.get3();
const float& rf4 = ref.get3();

}



51

First four

• A non-const float reference is returned 
by get1()

• We can use this to initialise:
– a float – i.e. a copy of the returned float
– a constant float – i.e. a constand copy of the 

returned float
– a float reference – it’s fine by us if it changes 

it, the returned ref is not const
– a constant float reference – guarantees not to 

change it, but we don’t care even if it did 



52

Next four: float from a const ref

class C
{
public:

float& get1()
{ return f; }

const float& get3() const
{ return f; }

private:
float f;

};

int main()
{

C ob;
const C& ref = ob;

float f1 = ob.get1();
const float cf1 = ob.get1();
float& rf1 = ob.get1();
const float& crf1 = ob.get1();

float f2 = ref.get1();
const float cf2 = ref.get1();
float& rf2 = ref.get1();
const float& crf2 = ref.get1();

float f3 = ob.get3();
const float cf3 = ob.get3();
float& rf3 = ob.get3();
const float& rf3 = ob.get3();

float f4 = ref.get3();
const float f4 = ref.get3();
float& rf4 = ref.get3();
const float& rf4 = ref.get3();

}



53

Next four: float from a const ref

• All give compile error:
error: passing `const C' as `this' 
argument of `float& C::get1()' discards 
qualifiers

• What does this mean?
– The this argument is the pointer to the current object 

and it is constant
– But get1() is not a const function, so you cannot call 

it on a constant reference – it would allow the ref to be 
altered

• All of these four lines will fail to compile
– the get1() fails – it’s irrelevant what we try to do with it



54

Third four
class C
{
public:

float& get1()
{ return f; }

const float& get3() const
{ return f; }

private:
float f;

};

int main()
{

C ob;
const C& ref = ob;

float f1 = ob.get1();
const float cf1 = ob.get1();
float& rf1 = ob.get1();
const float& crf1 = ob.get1();

float f2 = ref.get1();
const float cf2 = ref.get1();
float& rf2 = ref.get1();
const float& crf2 = ref.get1();

float f3 = ob.get3();
const float cf3 = ob.get3();
float& rf3 = ob.get3();
const float& rf3 = ob.get3();

float f4 = ref.get3();
const float f4 = ref.get3();
float& rf4 = ref.get3();
const float& rf4 = ref.get3();

}



55

Third four

• get3() returns a constant reference

• You can use it to initialise a float (a copy)
• You can store it in another constant reference
• You CANNOT just make a non-constant 

reference refer to it – would allow it to be altered
• This is the only line which fails:

float& rf3 = ob.get3();

• However, you could use const_cast to 
remove the const -ness

float& rf3 = const_cast<float&>(ob.get3());



56

Last four

class C
{
public:

float& get1()
{ return f; }

const float& get3() const
{ return f; }

private:
float f;

};

int main()
{

C ob;
const C& ref = ob;

float f1 = ob.get1();
const float cf1 = ob.get1();
float& rf1 = ob.get1();
const float& crf1 = ob.get1();

float f2 = ref.get1();
const float cf2 = ref.get1();
float& rf2 = ref.get1();
const float& crf2 = ref.get1();

float f3 = ob.get3();
const float cf3 = ob.get3();
float& rf3 = ob.get3();
const float& rf3 = ob.get3();

float f4 = ref.get3();
const float f4 = ref.get3();
float& rf4 = ref.get3();
const float& rf4 = ref.get3();

}



57

Last four

• get3() returns a constant reference
– This is safe, even when called on a constant object

• We are guaranteeing not to change it anyway

– Previously it failed in trying to return a float& from a 
constant object (using get1() )

– Now it succeeds in getting a const float& , using 
get3() , since we are guaranteeing not to change 
anything – the reference that we get is const

• So, this is the only line which fails:
float& rf4 = ref.get3();

– We are trying to assign a const reference (from 
get3() ) to a non-const reference – which would 
lose the const property

– Could use a const_cast to remove the const -ness



58

Question

class C
{
public:

// Constructor
C(int i = 0) : i(i)
{}
// Get value
int get() 
{ return i; }
// Set value
void set(int i) 
{ this->i = i; }

private:
int i;

};

void output( const C& c )
{

using namespace std;
cout << c.get() 

<< endl;
}

int main()
{

C c1(2), c2;
output( c1 );
output( c2 );

}

You have been provided with a simple class, C, and some functions which 
use it. However, the code will not compile. Correct the class definition.

Just use namespace
in this function



59

Answer

class C
{
public:

// Constructor
C(int i = 0) : i(i)
{}
// Get value
int get() const
{ return i; }
// Set value
void set(int i) 
{ this->i = i; }

private:
int i;

};

void output( const C& c )
{

using namespace std;
cout << c.get() 

<< endl;
}

int main()
{

C c1(2), c2;
output( c1 );
output( c2 );

}

The parameter c of output() is passed by constant reference. It is used 
to call get() . get() was not const , so didn’t guarantee to not change c



60

Function pointers



61

Question
• What is the output of the following 

code?

#include <iostream>

int mult2( int i )
{

return i*2;
}

int square( int i )
{

return i*i;
}

int main()
{

using namespace std;

int (*f)(int) = &mult2;
int (*g)(int) = &square;

for (int i = 0; i < 5 ; i++)
cout << (*f)(i) 

<< endl;

for (int i = 0; i < 5 ; i++)
cout << (*g)(i)

<< endl;

for (int i = 0; i < 5 ; i++)
cout << (*g)((*f)(i))

<< endl;

f = g;

for (int i = 0; i < 5 ; i++)
cout << (*f)(i) << endl;

}



62

Answer: function pointers
• What is the output of the following 

code?

#include <iostream>

int mult2( int i )
{

return i*2;
}

int square( int i )
{

return i*i;
}

int main()
{

using namespace std;

int (*f)(int) = &mult2;
int (*g)(int) = &square;

for (int i = 0; i < 4 ; i++)
cout << (*f)(i)

<< endl;

for (int i = 0; i < 4 ; i++)
cout << (*g)(i)

<< endl;

for (int i = 0; i < 4 ; i++)
cout << (*g)((*f)(i))

<< endl;

f = g;

for (int i = 0; i < 4 ; i++)
cout << (*f)(i) << endl;

}

Output:
0
2
4
6
0
1
4
9
0
4
16
36
0
1
4
9

f=mult2

g=square

g=square
f=mult2

square(mult2(i))

f=square



63

static



64

static – a reminder

• Static applies to three things:
1. Local variables

– Maintain their value beyond function calls
– Not stored on the stack

2. Global functions and variables
– Hides them within a file, file access only
– Does not show them to the linker

3. Member functions/data (in a class)
– Associated with the class rather than instances of 

the class (next week)
– i.e. functions have no this pointer

• So cannot access non-static member data – they would not 
know which object to affect



65

Question

• What is the output of the 
following code?

int f1( int i )
{

int j = ++i;
return j;

}

int f2( int i )
{

static int j = ++i;
return j;

}

int main()

{

using namespace std;

int i;

for (i=0 ; i<5 ; i++)

cout << f1(i)
<< endl;

for (i=0 ; i<5 ; i++)

cout << f2(i)

<< endl;

}



66

Answer: static local variables
• What is the output of the 

following code?

int f1( int i )
{

int j = ++i;
return j;

}

int f2( int i )
{

static int j = ++i;
return j;

}

int main()
{

using namespace std;

for ( int i = 0 
; i < 5 
; i++ )

cout << f1(i) 
<< endl;

for ( int i = 0 
; i < 5 
; i++ )

cout << f2(i) 
<< endl;

}

Output:
1
2
3
4
5
1
1
1
1
1



67

Question
• What is the output of the 

following code?

int j;
static int k;

int f1( int i )
{

j = ++i;
return j;

}

int f2( int i )
{

k = ++i;
return k;

}

int main()
{

using namespace std;

for ( int i = 0 
; i < 5 
; i++ )

cout << f1(i) 
<< endl;

for ( int i = 0 
; i < 5 
; i++ )

cout << f2(i) 
<< endl;

}



68

Answer: static global variables
• Static globals are just not 

accessible outside of the file. 
Within the file they make no 
difference!

int j;
static int k;

int f1( int i )
{

j = ++i;
return j;

}

int f2( int i )
{

k = ++i;
return k;

}

int main()
{

using namespace std;

for ( int i = 0 
; i < 5 
; i++ )

cout << f1(i) 
<< endl;

for ( int i = 0 
; i < 5 
; i++ )

cout << f2(i) 
<< endl;

}

Output:
1
2
3
4
5
1
2
3
4
5


